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Abstract
Background and objectives: Infectious diseases caused by pathogenic strains of bacteria are a global cause of morbidity and 
mortality. Hospital-acquired infections caused by Klebsiella pneumonia and Pseudomonas aeruginosa were found vulnerable dur-
ing the COVID-19 pandemic. They are also responsible for the onset of certain life-threatening infectious diseases such as cystic 
fibrosis, endocarditis, bacteremia, and sepsis. Looking into the importance of these two superbugs there is a strong need for 
extensive comparative differential gene expression analysis among the wild-type and mutant for betterment of intensive care 
unit patients especially as such pathogenic bacterial strains have a dangerous role in the intensive care unit.

Methods: This study revealed the RNA microarray gene expression profiles of GSE24688, GSE4026, and GSE117438. The study 
compared all genes from three different datasets and all drug resistance genes from two divergent organisms, Klebsiella pneu-
monia and Pseudomonas aeruginosa.

Results: 10 numbers of shared significant genes and five drug resistance genes were obtained in this study. These putative 
genes may show intriguing patterns of connection with resistance mechanisms and can be used in the field of diagnostics and 
treatment. Our divergent analysis also revealed a very clear distinct relation between Klebsiella pneumoniae and Pseudomonas 
aeruginosa at the genetic level, though they both function under antimicrobial resistance.

Conclusions: This study enhances the understanding of the 
genetic basis, providing valuable knowledge for the devel-
opment of new strategies to combat antibiotic resistance and 
enhance the efficacy of existing antibiotics.
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Introduction
Antimicrobial resistance (AMR) is a global epidemic that chal-
lenges modern medicine and leading cause of high fatality rates.1,2 
The World Health Organization (WHO) considered AMR as one 
of the world’s top 10 global public health challenges. Accord-
ing to the WHO, carbapenem-resistant Pseudomonas aeruginosa 
(PA), carbapenem-resistant Klebsiella pneumoniae (KP), and 
carbapenem-resistant Acinetobacter baumannii are three critical-
priority pathogens that are resistant to carbapenems and most other 
penicillins.3 Currently, there is a concerning trend of increasing 
resistance to colistin, an antibiotic often considered as a last resort 
option in treating nosocomial infections. It is a global crisis that 
has remained unchanged and requires immediate attention and ac-
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tion.4 The mortality for of AMR reached 750,000 per year and may 
extend to 10 million by 2050. This alarming statistic indicates that 
AMR poses a greater danger than cancer and diabetes combined.5,6 
The global death toll from pneumonia is estimated to be 1.575 
million.7 Global data show 2.8 million antibiotic-resistant infec-
tions occur each year in the USA, resulting in over 35,000 deaths. 
Similarly, AMR is estimated to cause 25,000 deaths per year in the 
European Union alone.7,8 Antibiotics that can kill antimicrobial-
resistant superbugs are rapidly running out. AMR is influenced 
by major three mechanisms, (1) changes in antibiotic membrane 
permeability, (2) enzymatic breakdown of antibacterial medicines, 
and (3) changes in antimicrobial target bacterial proteins.9 AMR 
remains a pressing issue due to the increasing occurrence of drug-
resistant pathogens that possess novel resistance mechanisms, 
leading to the emergence of AMR.10–12 The rapid global spread of 
multi-resistant and pan-resistant bacteria, which cause infections 
that are difficult to treat with currently available antimicrobial 
medicines like antibiotics, is particularly concerning.13,14

KP is becoming progressively difficult to treat with last-line an-
tibiotics. It is a major opportunistic pathogen that causes a variety 
of infections such as pneumonia, bacteremia, urinary tract infec-
tion, and potentially deadly septic shock. It is especially problem-
atic in hospitals, where it causes a variety of acute infections. Since 
KP was first identified as a pathogen of pneumonia in 1882, it has 
emerged as the world’s second most important clinical pathogen, 
after Staphylococcus aureus. It is now considered a strain of con-
cern and a serious risk to public health because of the emergence of 
multidrug-resistant strains associated with hospital outbreaks and 
hypervirulent strains associated with severe community-acquired 
infections. As a result, it is becoming extensively important to in-
vestigate the pathogenicity mechanism and the virulence control 
network to prevent and control KP infection.15 Similarly, PA is 
a gram-negative, opportunistic pathogen with a broad host range 
that can be composed of various ecological niches. It is a common 
cause of many human infectious diseases, including sepsis, acute 
and chronic infections of the human airways, urinary tract infec-
tions, burn infections, and keratitis. It is also responsible for a large 
proportion of hospital-acquired infections and is linked to nosoco-
mial infections.16 The most difficult problem with PA is its abil-
ity to rapidly develop resistance while treating an infection.17 The 
WHO has classified it as a priority-one pathogen and new drugs 
are seriously needed due to the emergence of multidrug-resistant 
strains.18

The microarray technique is a powerful tool used for detect-
ing multiple target gene expressions of different organisms and 
can measure the transcript abundance of 10s of 1000s of genes 
in biological samples at the same time. It has a lot of advantages 
for expression profiling, and it may generate huge data, which 
requires a series of analyses to make it understandable.19–21 Mi-
croarray data must be correctly analyzed to obtain the optimum 
result. Computational analysis is essential for processing the data 
from large-scale expression profiling experiments and establish-

ing the framework for biological understanding.22,23 It also has 
an important role in overcoming barriers to target identification 
and drug detection and development.13 The majority of microar-
ray research strives to distinguish genes and analyze connections 
between individual genes in signaling pathways and networks to 
infer the phenotype of genes.24–27 Hence, the current study focused 
on biological differences between different bacterial strains of the 
group including wild types and mutants. We aimed to perform dif-
ferential gene expression analysis on three microarray datasets 
(GSE24688, GSE4026, and GSE117438). Also, to understand the 
resistance mechanism and functional enrichment of the genes as-
sociated with KA and PA. Despite belonging to different orders 
the two bacteria work to obtain antibiotic resistance mechanisms. 
Thus, comparative analysis would open new vistas for the unique-
ness of these genes with their actions.

Materials and methods

Data retrieval
The raw data included several microarray data sets obtained from 
the Gene Expression Omnibus (commonly known as GEO) pub-
lic repository. Three microarray datasets (KP, PA1, and PA2) were 
retrieved, GSE24688, GSE4026, and GSE117438, and the anal-
ysis was performed. Details of each dataset are shown in Table 
1. Table 1 shows the expression profile of the microarray dataset 
(GSE24688) of KP, the total number of isolated samples is 30, with 
11 different strains, including 6 wild-type samples and 24 mutants. 
RNA type data were collected for differentially expressed gene 
(DEG) analysis. The second expression profile of the microarray 
dataset (GSE4026) of PA has shown the total number of isolated 
samples was 30, with four different strains, including 10 wild-
type samples and 20 mutants. RNA data were collected for DEG 
analysis. In the third expression profile of the microarray dataset 
(GSE117438) of PA, the total number of isolated samples was 6, 
with 2 different strains, including 3 wild-type samples and 3 mu-
tants. RNA data were collected for DEG analysis.

Data processing and identification of DEGs
For each microarray dataset, raw data were downloaded from the 
GEO database (https://www.ncbi.nlm.nih.gov/gds) followed by a 
grouping of wild-type and mutant genes (R version 4.0.0) (Fig. 
1). It has shown implementation of the complete preprocessing 
workflow for microarray analysis. The limma R package was used 
for background correction and quantile normalization. A nonspe-
cific intensity filtering procedure was then applied to eliminate low 
probes in each data set based on the probe intensity distribution. 
For statistical visualization and analysis, we examine the data to 
determine the extent to which the data are presented. The method 
we used here estimates that the data are on a log2 scale, usually 
in the range of 0 to 16. The “exprs” function can take an expres-

Table 1.  Details of the microarray datasets used in the gene expression analysis

GEO ID Experiment type Organism name Total 
samples, n

Total 
strains, n

Total wild-
type, n

Total 
mutants, n

GSE24688 Expression profiling by array Klebsiella pneumoniae 30 11 6 24

GSE4026 Expression profiling by array Pseudomonas aeruginosa 30 4 10 20

GSE117438 Expression profiling by array Pseudomonas aeruginosa 6 2 3 3

GEO, gene expression omnibus.
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sion value as a data frame; with one column per sample and one 
row per gene. The filtering procedure is described in detail in the 
limma user guide (https://bioconductor.org/packages/release/bioc/
vignettes/limma/inst/doc/usersguide.pdf).

Data were normalized followed by clustering and correlation 
analysis to determine the linear relationship between samples. An 
unsupervised analysis is a good way to determine where the data 
variation comes from. It can also detect samples that are likely 
to be outliers. The “cor” function can calculate correlations (on a 
scale of 0–1) in pairs among all samples. This can then be visual-
ized with a heat map, which is one of the most popular libraries 
for creating the heatmap in R. The correlation coefficient is de-
termined using correlation analysis and is essential for evaluating 
how much one sample changes when the other does. We used hi-
erarchical clustering on the microarray expression data for each 
strain to identify major similarities and differences in the transcrip-
tional response to our panel of strains expressed as fragments per 
kilobase millions.

Principal component analysis (PCA) was performed. The major 
purpose of PCA is to visualize the sample data and classify the 
samples into two groups. As PCA is an unsupervised method, it 
does not consider known sample groups. However, we can add la-
bels as we draw the result. The “ggplot2” package was very useful 
for this. The “ggrepel” package can be used to position text labels 
more smartly so that they are readable. The volcano plot function 
is a popular method to visualize the results of a DE analysis. The 
log-fold change is represented by the X-axis, and the Y-axis is a 
measure of statistical significance, which was. the logarithmic 
probability or B statistic. The distinctive shape of the volcano must 
be seen.

Functional enrichment analysis
Following DEG analysis, to understand the biological process, 

molecular function, and cellular component, we have used com-
parative gene ontology (GO) (https://www.comparativego.com/ ) 
here. The molecular pathways and functional analysis of each data 
set were performed using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Mapper (https://www.genome.jp/kegg/tool/
map_pathway1.html ). To perform detailed gene list analysis and 
graphical visualization of enrichment pathways, we used ShinyGO 
(http://bioinformatics.sdstate.edu/go/ ) with the following configu-
ration: search for KP and PA species, false discovery rate threshold 
p < 0.05, number of most significant terms to show 50.28,29

Gene comparison and downstream analysis
Significant genes from each dataset were then compared using Bio-
infoGP Venny 2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/index.
html). The details of the key genes were then retrieved from Mi-
crobesOnline (http://microbesonline.org) followed by retrieving the 
details of the drug resistance genes from the Pathogen Detection 
Microbial Browser to identify the genetic and genomic elements 
(MicroBIGG-E) (https://www.ncbi.nlm.nih.gov/pathogens/micro-
bigge/) of KP and PA and using Pathosystems Resource Integration 
Center (PATRIC) 3.6.12 (https://www.patricbrc.org/), we retrieved 
gene resistance mechanisms for common drug resistance genes.

Results
We used different microarray datasets containing 66 samples 
of both organisms that were retrieved from the GEO database 
(GSE24688,30 GSE4926,30 and GSE1174386), which led to inter-
esting findings regarding the DEGs in the two groups (Fig. 1).

Differential gene expression
We obtained three boxplots after normalizing all three datasets of 
KP and PA (number of samples: 30, 30, and 6). Previously, the mi-

Fig. 1. The overall pipeline of the bioinformatics analysis. GEO, gene expression omnibus; KP, Klebsiella pneumoniae; PA, Pseudomonas aeruginosa.
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croarray dataset expression values exceeded the log2 scale (>16). 
The expression value fell between the log2 scale (Fig. 2a), making 
it suitable for further comparison and statistical analysis after nor-
malization.

Sample correlation and hierarchical clustering
The correlation heatmaps (Fig. 2b) show the three datasets of the 
KA and PA samples. The dendrograms in the heatmaps show close-
ly related samples. The high correlation of the sample is shown by 
the red color and the low correlation is shown by the blue color. 
The diagonal red boxes are from identical sample IDs, i.e., highly 
correlated with values = 1. Despite diagonal boxes, some other 
boxes are representing the correlation between highly correlated 
samples. In these heatmaps, the clustering was done based on cor-
related samples (strains and groups). The mutant group is shown in 
pink and the wild-type group is shown in sky blue.

Volcano plot of DEGs
The sky blue color shows highly significant genes whereas the red 
color shows weakly significant genes. Significant p-values were 
<0.5 and the Fc cutoff was 1. Of 3,157 KP genes, we found 1,140 
DEGs, of 1,556 PA1 genes we found 94 DEGs, and of 1,556 PA2 
genes we found 641 DEGs (sky blue). The second heatmap shows 
the top 10 DEGs in each dataset (Fig. 2e).

Gene comparison
In this study, the retrieved KP and PA datasets comprised 2,366 and 
1,066 total genes. The study observed 569 (19.9%) of the total over-
lapping genes after comparison of the three datasets of two organ-
isms. As the organisms belong to two different orders, we checked 
whether they shared significant genes. We had 1,140 significant 
genes out of 3,157 KP genes, 94 significant genes out of 1,556 PA1 
genes, and 641 significant genes out of 1,556 PA2 genes. After com-
paring all three groups of significant genes (Fig. 2g), we found 10 
common significant genes (atpF, fur, ndk, nuoK, ppk, pyrH, rmlC, 
rnk, rph, and ubiE). Afterward, the study was designed to search the 
MicroBIGG-E database for drug-resistance genes in both KP and 
PA and found 746 antibiotic-resistance genes in KP and 684 drug-
resistance genes in PA.30,31 We compared common genes and found 
246 (20.8%) drug resistance genes in both KP and PA, and compared 
the common KP and PA genes to all of the genes (both significant 
and nonsignificant) from the three datasets (Fig. 2h), revealing five 
common antibiotic resistance genes (arsB, arsC, arsR, PhoP, and 
Pho). Our study identified three ars genes (arsB, arsC, and arsR). 
The ars operon is the most common resistance mechanism seen in 
Gram-positive and Gram-negative bacteria, and it can be chromo-
somally or plasmid-encoded. The PhoP/PhoQ (PhoPQ) found in our 
study follows the two-component system (TCS) for drug resistance. 
The PhoPQ TCS system is highly conserved among gram-negative 
bacteria, whether pathogenic or nonpathogenic (Fig. 3).

GO and pathway enrichment analysis
We used comparative GO as the primary tool for GO, using a con-
trolled vocabulary to identify genes in terms of molecular func-
tions, biological processes, and identified cellular components. To 
gain insight into the biological roles of the DEGs, we performed 
GO enrichment on the top 10 highly expressed significant genes 
in each GEO dataset (Fig. 2f, Tables 2–4), common 10 significant 
genes of three datasets (Figs. 2g, 4, and Table 5) as well as the top 
five drug resistance genes in each dataset (Figs. 2h, 5, and Table 6).

More specifically, we found molecular functions, biological 
processes, and cellular components associated with these key 

genes. Surprisingly, among the top 10 most abundantly expressed 
significant KP genes, the argR gene is involved in all three major 
aspects, including molecular functions, DNA binding, DNA-bind-
ing transcription factor activity, and arginine binding; biological 
processes, arginine biosynthetic process and protein complex oli-
gomerization; and a cellular component, cytoplasm. In PA1, none 
of the genes were enriched in all of the three predefined functional 
characteristics. In PA2, putA, coxA, and coIII genes are involved 
in all three major attributes of GO. Likewise, in common 10 sig-
nificant genes and common five drug resistance genes pyrH, nuoK, 
atpF, ppk, arsB, phoP, and phoQ are involved in the three major 
areas of GO. All the gene information was retrieved from PATRIC 
and MicrobesOnline databases (Tables 7 and 8).32

Molecular pathways and functional analysis were performed 
with KEGG Mapper. It is a set of KEGG mapping tools available 
on the KEGG website (https://www.kegg.jp/ or https://www.ge-
nome.jp/kegg/) along with the KOALA family of automatic map-
ping tools KO identifiers (KEGG orthology) available, which were 
used during mapping. The enrichment results were obtained by an-
alyzing significant genes in each of the three data sets using KEGG 
Mapper (Supplemental sheets 1, 2, and 3).33 ShinyGO was used to 
create a pathway visualization of the common 10 significant genes.

Discussion
Our research focused on determining the expression levels of AMR 
genes KP and PA to reveal their function and the gene interactions 
with the potential to enable the bacteria to survive the effects of 
antibiotics designed to kill them.34 A previous report suggests that 
the Pseudomonas aeruginosa strain AG1 demonstrated remarka-
ble effectiveness with a hybrid assembly, using both short and long 
reads. This approach provided valuable insights into the genomic 
architecture and molecular factors associated with multiresistance 
and virulence determinants.35 A multiomic approach using the 
genomic and transcriptomic elements related to antibiotic resist-
ance genes was also studied before in the versatile environmental 
organism PA (AG1).36 We collected microarray data from the GEO 
database followed by we detected DEGs based on wild-type and 
mutant groups from KP and PA samples.37 In this study, the under-
lying possible cellular processes and metabolic pathways in both 
of the organisms were analyzed.

Data normalization
Normalization is an essential step for microarray data analysis to 
eliminate systematic variation that affects the measured gene expres-
sion levels.38 Hierarchical clustering was used to group the strain 
samples, and the dendrogram is displayed at the top of a heatmap 
that shows the Pearson correlation between each pair of samples.39 
Sample identity was shown by two-way color indexing the group 
and strain. The results demonstrated that KP and PA samples from 
different groups and strains could be successfully distinguished. 
Similar findings were reported in the identification of core genes of 
PA against multiple perturbations by Molina-Mora et al.40 The study 
also discussed various methodological issues related to data analy-
sis, normalization, and classification algorithms. PCA exploratory 
data analysis results are graphically represented in two-dimensional 
dot plots of scores of principal components. The total sample was 
divided into two groups, mutant (red) and wild-type (sky blue) based 
on different strains of bacterial like the work of Lee et al.41

DEG comparison
Volcano plots are ideal for examining the levels of expression of 
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Fig. 2. Different types of gene expression data. (a) Box plot of normalized gene expression data, (b) Representative cluster heat maps of correlation between 
different strain samples of Klebsiella pneumoniae and Pseudomonas aeruginosa datasets, (c) PCA scatterplot, (d) Volcano plot of all differentially expressed 
genes, (e) Heatmaps of the top 10 highly expressed significant genes, (f) In-depth analysis of the top 10 highly expressed significant genes, (g) In-depth 
analysis of common significant genes of all three datasets, (h) In-depth analysis of common drug resistance genes. DEG, differentially expressed gene; GEO, 
gene expression omnibus; KP, Klebsiella pneumonia; logFC, log fold change; PA, Pseudomonas aeruginosa; PC, principal component; PCA, principal compo-
nent analysis; RG, resistance gene.

https://doi.org/10.14218/GE.2023.00022


DOI: 10.14218/GE.2023.00022  |  Volume 23 Issue 1, March 20246

Sahoo S. et al: Antibiotic resistance: Transcriptional analysis of two superbugsGene Expr

a large number of genes (logFC Vs log-odd). To compare all the 
genes in the data sets as well as the important AMR genes, Venny 
online software was used to draw Venn diagrams. MicrobesOn-
line was used for in-depth analysis of key genes. It provides a 
community resource for genome comparison and functional anal-

ysis like the previous report in PA strain AG1, where 518 DEGs 
over time, including 14 hub genes, multiple gene clusters, and 15 
enriched pathways were identified.42 More than 1,000 complete 
genomes of bacteria, fungi, and archaea, as well as thousands 
of expression microarrays from various organisms ranging from 

Fig. 3. Classification of Klebsiella pneumonia and Pseudomonas aeruginosa. 

Table 2.  GO of the top 10 highly expressed significant genes of Klebsiella pneumonia

Gene Molecular function Biological process Cellular component

fadH 2,4-dienoyl-CoA reductase Nicotinamide Adenine 
Dinucleotide Phosphate Hydrogen (NADPH) 
activity, Flavin mononucleotide (FMN) binding

– –

chaB – – –

miaE tRNA-(2-methylthio-N-6-(cis-hydroxy) 
isopentenyl adenosine)-hydroxylase activity

– –

argR DNA binding, DNA-binding transcription 
factor activity, arginine binding

Arginine biosynthetic process, 
protein complex oligomerization

Cytoplasm

moaB – Mo-molybdopterin cofactor 
biosynthetic process

moaD Molybdopterin synthase activity – –

ybiV hydrolase activity – –

traL – Conjugation, pilus assembly Cell outer membrane, an integral 
component of the membrane

yacC – – –

yaaA – – –

FMN, flavin mononucleotide; GO, gene ontology; NADPH, Nicotinamide Adenine Dinucleotide Phosphate Hydrogen.

https://doi.org/10.14218/GE.2023.00022
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model organisms, are available through this portal like the pre-
vious study.43,44 Consequently, with the widespread presence of 
arsenic in the environment, certain bacteria have evolved arsenic 
defense mechanisms to digest arsenic. Interestingly we found 
Ars genes (arsenate reduction and methylation), Aio genes (arse-
nate oxidase), and Arr genes (arsenate respiration) are the most 

common genes involved in arsenic metabolism pathways.45 Five 
(Ars RDABC) or three (ArsRBC) genes are found in the two most 
prevalent kinds of these operons produce three proteins, (1) an 
arsenate permease (arsB), (2) an arsenate reductase (arsC), and 
(3) a regulatory protein (arsR), which transforms arsenate to ar-
senite.46,47 The phosphate transporter (Pit system) transports ar-

Table 3.  GO of the top 10 highly expressed significant genes of PA1

Gene Molecular function Biological process Cellular component

pmrA DNA binding Phosphorelay signal transduction system, 
regulation of transcription, DNA-templated

–

pilH – phosphorelay signal transduction system –

pilG – phosphorelay signal transduction system –

rmlC dTDP-4-dehydrorhamnose 3,5-epimerase activity dTDP-rhamnose biosynthetic process –

cupA1 – Cell adhesion Pilus

pmrB Phosphorelay sensor kinase activity, ATP binding – An integral component 
of the membrane

pilU ATP binding, endodeoxyribonuclease activity, 
producing 5′-phosphomonoesters

Type IV pilus-dependent motility –

upp Magnesium ion binding, uracil 
phosphoribosyltransferase activity, GTP binding

Uracil salvage, nucleoside metabolic 
process, UMP salvage

–

pilZ Cyclic-di-GMP binding – –

orn 3′-5′-exoribonuclease activity, nucleic acid binding – Cytoplasm

ATP, adenosine triphosphate; dTDP, Deoxythymidine diphosphate; GMP, guanosine monophosphate; GTP, guanosine-5′-triphosphate; GO, gene ontology; PA, Pseudomonas aer-
uginosa; UMP, Uridine Monophosphate.

Table 4.  GO of the top 10 highly expressed significant genes of PA1

Genes Molecular function Biological process Cellular component

mmsB 3-hydroxyisobutyrate dehydrogenase activity, oxidoreductase 
activity, acting on the CH-OH group of donors, NAD 
or NADP as acceptor, NADP binding, NAD binding

Valine catabolic process –

catA ferric iron binding, catechol 1,2-dioxygenase activity Catechol-containing compound 
catabolic process

–

putA DNA binding, DNA-binding transcription factor activity, 
1-pyrroline-5-carboxylate dehydrogenase activity, proline 
dehydrogenase activity, oxidoreductase activity, acting on the 
aldehyde or oxo group of donors, NAD or NADP as acceptor

Proline metabolic process, proline 
biosynthetic process, proline 
catabolic process to glutamate

Cytoplasmic side of 
plasma membrane

antA Iron ion binding, dioxygenase activity, 
2 iron, 2 sulfur cluster binding

Cellular metabolic process –

catC Muconolactone delta-isomerase activity Beta-ketoadipate pathway –

coxA Cytochrome-c oxidase activity, heme 
binding, metal ion binding

Oxidative phosphorylation, aerobic 
respiration, electron transport 
coupled proton transport, 
respiratory electron transport chain

The plasma membrane, 
an integral component 
of the membrane

gcvT2 Aminomethyltransferase activity, transaminase activity Glycine catabolic process Cytosol

pra – – –

pcaC Peroxiredoxin activity – –

coIII Cytochrome-c oxidase activity, electron 
transfer activity, oxidoreduction-driven active 
transmembrane transporter activity

Aerobic respiration, aerobic 
electron transport chain

The plasma membrane, 
an integral component 
of the membrane

CH-OH, Methanol; GO, gene ontology; NAD, Nicotinamide adenine dinucleotide; NADP, Nicotinamide adenine dinucleotide phosphate; PA, Pseudomonas aeruginosa.
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senate (As V) into the cell, which is then reduced to arsenite (As 
III) by a cytoplasmic arsenate reductase enzyme encoded by the 
Ars C gene. The As (III)-specific transmembrane protein arsB, 
produced by the Ars B gene, then effluxes this (As III) from cells 
via the chemiosmotic gradient.48,49

The sensor kinase PhoQ and the response regulator PhoP make 
up the PhoPQ TCS.50 PhoQ can autophosphorylate in response 
to a variety of environmental signals, including low Mg2+ and 
Ca2+ levels, acidic pH, the presence of cationic antimicrobial 
peptides, and osmotic upshift. PhoP receives the phosphate from 
phosphorylated PhoQ, and activated PhoP regulates the expres-
sion of downstream genes (PhoP regulon). Despite the fact that 
PhoQs in different microorganisms can detect the same or similar 
environmental signals, the regulons activated by phosphorylated 
PhoP vary between bacteria species.51 PhoPQ systems of human 
pathogens are involved in polymyxin resistance, low-magnesium 
adaptation, virulence, and acid tolerance. Due to the extensive 
coverage of the PhoP regulon, the loss of PhoPQ function has a 
pleiotropic effect on a bacterium.52 The research highlights the dif-
ference between overlapping drug-resistant genes and overlapping 
significant genes. These dissimilarities are likely owing to the evo-
lution of genes from a common ancestor with similar functions, 
which have undergone mutations and changes in their sequences 
and functions over time.53,54

GO and pathway enrichment analysis
Graphs and integrated them into graph reports are very important 
for visualizing and comparing GO groups in several samples, in-
cluding those from bacterial pathogens, synchronously from dif-
ferent sources.55,56 The gene information was retrieved from the 
PATRIC and MicrobesOnline databases (Tables 7 and 8).32 It is a 
Shiny application built with many R/Bioconductor programs and 

a large annotation and pathway database extracted from a variety 
of sources.28,29 It is intended for in-depth gene list analysis, with 
graphical enrichment visualization and pathway analysis (p-value 
< 0.05). The hierarchical clustering tree summarizes the relation-
ship between the significant pathways listed in the enrichment tab. 
Pathways with a high number of shared genes are grouped and 
p-values with larger dots are more significant. The interactive plot, 
like the tree tab, represents the relationship between enriched path-
ways. If two pathways (nodes) share 20% (default) or more genes, 
they are interconnected. In our study, the gene sets are significantly 
enriched in darker nodes. Larger nodes correspond to larger gene 
sets. More overlapping genes are represented by thicker edges 
(Fig. 6a, b).29

In clinical application, we found that arsenic resistance genes 
(arsB, arsC, and arsR) in multidrug-resistant KP and PA can be 
valuable for researchers in several ways to develop therapeutic 
use. Salam et al.57 in 2020 studied arsenic resistance genes pro-
vided insights into cross-resistance mechanisms between arse-
nic and antibiotics. The investigators can potentially discover 
novel drug targets or pathways, offering promising therapeutic 
avenues to combat multidrug resistance effectively.57,58 Linking 
to our findings the arsenic resistance genes can be used in target 
identification for drug development. Those structural similarities 
gene with efflux pump protein can be taken for new drug de-
velopment. Inhibiting these genes or proteins could potentially 
restore sensitivity to antibiotics in multidrug-resistant strains.59 
Recently, Venturini et al.60 focused on these genes and suggested 
clinicians can use them as diagnostic markers to identify multid-
rug-resistant strains of KP and PA, enabling informed decisions 
on selecting appropriate antibiotic treatments for better patient 
outcomes. In personalized treatment strategies, some of the MDR 
genes also contribute to allowing tailored treatment based on the 

Fig. 4. GO: Quick recap of 10 common genes. ATP, adenosine triphosphate; CTP, Cytidine triphosphate; dTDP, Deoxythymidine diphosphate; GO, gene ontol-
ogy; GTP, guanosine-5’-triphosphate; ICM, integral component of membrane; PK, polyphosphate kinase; PM, Plasma Membrane; UTP, Uridine-5’-triphosphate.
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genetic characteristics of the infecting strain, thereby optimiz-
ing patient outcomes. The two-component system genes, phoP, 
and phoQ, have a crucial role in the multidrug resistance of KP 
and PA, modulating cellular processes essential for antibiotic 
resistance. Their detection as diagnostic markers can help iden-
tify multidrug-resistant strains, guiding informed treatment deci-
sions. Additionally, targeting these genes presents a promising 
approach for drug development, offering potential new therapies, 
while combination strategies may enhance the efficacy of existing 
antibiotics against these challenging pathogens, ultimately com-
bating multidrug resistance and improving patient outcomes.61 
This study explored the genetic basis of drug resistance in KP 
and PA, two dangerous superbugs responsible for life-threatening 
infections, including those acquired in hospitals and during the 
COVID-19 pandemic. The findings offer promising prospects for 
diagnostics, treatment, and combating antibiotic resistance, aim-
ing to enhance intensive care unit (ICU) patient outcomes and 
global public health. This ground-breaking study delves into the 
intricate genetic mechanisms underlying drug resistance in KP 
and PA, formidable pathogens linked to severe hospital-acquired 
infections and COVID-19 vulnerability. By analyzing extensive 
RNA microarray data from multiple datasets, the research re-

veals 10 shared significant genes and five drug-resistance genes, 
holding potential for future diagnostics and treatment strategies. 
These valuable insights aid in combating AMR, fortifying ICU 
patient care, and bolstering global efforts against life-threatening 
infectious diseases caused by these two superbugs.

Conclusion
We observed interesting phenomena of nonsimilarity between 
common significant genes and common drug resistance genes 
that led to conclusions about genetic divergence due to which its 
physical properties have been changed but chemically involved 
in similar drug resistance mechanisms. Our study used a robust 
integrative bioinformatics analysis of microarray data to investi-
gate the DEG of AMR superbugs. Through a comparative analy-
sis supported by functional enrichment results, diverse pathways 
and distinct biological processes, molecular function, and cellu-
lar components were highlighted. Interestingly, we observed 10 
common genes in all three datasets that are highly expressed and 
significant, five genes that are present in both KP and PA and 
are involved in drug resistance in both superbugs. Our findings 
provide a detailed account of the drug resistance gene’s diver-

Table 5.  GO enrichment on the common 10 genes of KP and PA

Gene Molecular function Biological process Cellular component

pyrH ATP binding, UMP kinase activity De novo CTP 
biosynthetic process

Cytoplasm

Fur DNA binding, DNA-binding transcription 
factor activity, metal ion binding

– Cytoplasm

ubiE 2-octaprenyl-6-methoxy-1,4-benzoquinone methylase 
activity, demethylmenaquinone methyltransferase activity, 
S-adenosylmethionine:2-demethylquinol-8 methyltransferase 
activity, S-adenosylmethionine:2-demethylmenaquinol 
methyltransferase activity, S-adenosylmethionine:2-
demethylmenaquinol-7 methyltransferase activity

Ubiquinone 
biosynthetic process, 
aerobic respiration, 
menaquinone 
biosynthetic process, 
methylation

–

Ndk Nucleoside diphosphate kinase activity, 
ATP binding, metal ion binding

GTP biosynthetic 
process, UTP 
biosynthetic process, 
CTP biosynthetic process

Cytoplasm

nuok Quinone binding, NADH dehydrogenase (quinone) activity ATP synthesis coupled 
electron transport

The plasma membrane, an integral 
component of the membrane

Rnk DNA binding, kinase activity, RNA polymerase binding Regulation of DNA-
templated transcription, 
elongation

–

Rph tRNA binding, 3′-5′-exoribonuclease activity, 
tRNA nucleotidyltransferase activity

rRNA processing, tRNA 
processing, rRNA 
catabolic process

–

atpF Hydrolase activity, proton-transporting ATP 
synthase activity, rotational mechanism

ATP synthesis coupled 
with proton transport

The plasma membrane, an integral 
component of the membrane, 
proton-transporting ATP synthase 
complex, coupling factor F(o)

rmlC dTDP-4-dehydrorhamnose 3,5-epimerase activity dTDP-rhamnose 
biosynthetic process

–

ppk ATP binding, polyphosphate kinase activity, metal ion binding polyphosphate 
biosynthetic process

Polyphosphate kinase complex

ATP, adenosine triphosphate; CTP, Cytidine triphosphate; dTDP, Deoxythymidine diphosphate; GO, gene ontology; GTP, guanosine-5’-triphosphate; KP, Klebsiella pneumonia; 
NADH, nicotinamide adenine dinucleotide; PA, Pseudomonas aeruginosa; UMP, Uridine Monophosphate; UTP, Uridine-5′-triphosphate.
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gent evolution, which could open new vistas for MDR prognosis 
and can be informative in antimicrobial therapeutics research. 
The candidate gene approach can be used to validate AMR to 
know the potential interesting association patterns with resist-
ance mechanisms.
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Table 6.  GO enrichment of the five common genes of KP and PA

Gene Molecular function Biological process Cellular component

arsB Arsenite secondary active transmembrane 
transporter activity, antimonite secondary 
active transmembrane transporter activity

Arsenite transport, 
response to arsenic-
containing substance

An integral component of the 
plasma membrane, an integral 
component of the membrane

arsC – – –

arsR Transcription regulatory region sequence-specific DNA 
binding, DNA-binding transcription factor activity

Regulation of 
transcription, DNA-
templated

–

phoP Phosphorelay sensor kinase activity, phosphorelay response 
regulator activity, transcription regulatory region sequence-
specific DNA binding, DNA-binding transcription activator 
activity, DNA-binding transcription factor activity

Positive regulation 
of phospholipid 
biosynthetic process

Cytosol, protein-DNA complex

phoQ ATP binding Phosphorelay signal 
transduction system

The plasma membrane, 
an integral component 
of the membrane

ATP, adenosine triphosphate; GO, gene ontology; KP, Klebsiella pneumonia; PA, Pseudomonas aeruginosa.

Fig. 5. GO: Quick recap of five common drug-resistance genes. ATP, adenosine triphosphate; DNA-T, DNA- templated; GO, gene ontology; PAPB, Positive regu-
lation of phospholipid biosynthesis; PTS, phosphorelay transduction system; RACS, response to arsenic-containing substance; RT, regulation of transcription.
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Table 7.  Details of 10 common genes

Gene name Organism Type GC content Position

pyrH KP Protein, 241 a.a 55.37% 217570.. 218295 (+) on NC_009648 genomic chromosome 5

pyrH PA Protein, 245 a.a. 63.55% 4092231.. 4092968 (−) on NC_002516 genomic chromosome 1

Fur KP Protein, 150 a.a 52.32% 792692.. 793144 (−) on NC_009648 genomic chromosome 5

Fur PA Protein, 134 a.a. 60.25% 5351675.. 5352079 (−) on NC_002516 genomic chromosome 1

ubiE KP Protein, 251 a.a. 53.31% 4738750.. 4739505 (+) on NC_009648 genomic chromosome 5

ubiE PA Protein, 256 a.a. 64.46% 5702669.. 5703439 (+) on NC_002516 genomic chromosome 1

Ndk KP Protein, 143 a.a. 56.25% 3126833.. 3127264 (−) on NC_009648 genomic chromosome 5

Ndk PA Protein, 143 a.a. 61.11% 4266470.. 4266901 (−) on NC_002516 genomic chromosome 1

nuoK KP Protein, 100 a.a. 56.44% 2939557.. 2939859 (−) on NC_009648 genomic chromosome 5

nuoK PA Protein, 102 a.a. 64.40% 2992548.. 2992856 (+) on NC_002516 genomic chromosome 1

Rnk KP Protein, 140 a.a. 61.23% 741607.. 742029 (−) on NC_009648 genomic chromosome 5

Rnk PA Protein, 134 a.a. 68.15% 5940020.. 5940424 (−) on NC_002516 genomic chromosome 1

Rph KP Protein, 238 a.a. 59.55% 4365064.. 4365780 (−) on NC_009648 genomic chromosome 5

Rph PA Protein, 239 a.a. 67.50% 6003377.. 6004096 (−) on NC_002516 genomic chromosome 1

atpF KP Protein, 154 a.a. 51.40% 4537292.. 4537756 (−) on NC_009648 genomic chromosome 5

atpF PA Protein, 156 a.a. 60.08% 6252707.. 6253177 (−) on NC_002516 genomic chromosome 1

rmlC KP Protein, 184 a.a. 55.86% 2715683.. 2716237 (−) on NC_009648 genomic chromosome 5

rmlC PA Protein, 181 a.a. 64.29% 5813122.. 5813667 (+) on NC_002516 genomic chromosome 1

Ppk KP Protein, 686 a.a. 54.00% 3097224.. 3099284 (+) on NC_009648 genomic chromosome 5

Ppk PA Protein, 736 a.a. 63.86% 5902386.. 5904596 (−) on NC_002516 genomic chromosome 1

a.a., amino acid; GC, guanine-cytosine; KP, Klebsiella pneumonia; PA, Pseudomonas aeruginosa.

Table 8.  Details of five common drug resistance genes

Gene Organ-
ism Type GC content Position Resistance mechanism

arsB KP Protein, 430 a.a 60.79% 3625438.. 3626730 (−) on NC_009648 
genomic chromosome 5

Efflux pump

arsB PA Protein, 427 a.a. 69.70% 2506978.. 2508261 (+) on NC_002516 
genomic chromosome 1

Efflux pump

arsC KP Protein, 140 a.a. 60.76% 3625006.. 3625428 (−) on NC_009648 
genomic chromosome 5

Efflux pump

arsC PA Protein, 156 a.a. 67.94% 2508293.. 2508763 (+) on NC_002516 
genomic chromosome 1

Efflux pump

arsR KP Protein, 109 a.a. 60.91% 3626782.. 3627111 (−) on NC_009648 
genomic chromosome 5

Efflux pump

arsR PA Protein, 116 a.a. 69.23% 2506614.. 2506964 (+) on NC_002516 
genomic chromosome 1

Efflux pump

phoP KP Protein, 223 a.a. 59.52% 1292135.. 1292806 (−) on NC_009648 
genomic chromosome 5

Efflux pump, gene-altering cell wall

phoP PA Protein, 225 a.a. 66.22% 1277688.. 1278365 (+) on NC_002516 
genomic chromosome 1

Efflux pump, cell wall alteration

phoQ KP Protein, 488 a.a. 58.62% 1290669.. 1292135 (−) on NC_009648 
genomic chromosome 5

Drug target, two-component system, 
virulence, regulation of gene expression

phoQ PA Protein, 448 a.a. 68.37% 1278362.. 1279708 (+) on NC_002516 
genomic chromosome 1

Efflux pump, gene-altering cell wall

a.a., amino acid; GC, guanine-cytosine.
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